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Current investigations of energetic structural materials involve shock-induced and shock-assisted chemical
reactions in which complex physical processes are only elucidated by computational models of gas gun experiments at
the present time. Physics models that describe the equation of state, material strength, heat transfer, and chemical
reaction for energetic structural materials must be calibrated with experimental data to obtain material constants.
Numerical solutions introduce errors that are difficult to quantify. This paper introduces a verification procedure of
a code appropriate for simulation of gas gun experiments with energetic structural materials. Simulated gas gun
experiments involving the Ni + Al mixture are used to illustrate the proposed verification procedure. The physics
models together with the conservations of mass, momentum, and energy are explicitly solved using a second order

finite volume scheme.

Nomenclature

frequency factor

acoustic velocity

specific heat capacity at constant volume
Courant-Friedrichs-Lewy

total energy

specific internal energy or error
empirical safety factor

spatial or the temporal step size
heat conduction coefficient
molar mass

distension ratio pressure dependency
pressure

pore elastic yield strength

pore crush strength

fitting parameters

heat flux vector

slope of the linear U, — U, curve
temperature

time

melting temperature

shock velocity

particle velocity

velocity vector

initial yield stress

distension ratio or fitting parameter
Griineisen parameter

transition state energy

latent heat of melting

strain tensor

reaction rate

fitting parameters

shear modulus

specific chemical potential
stoichiometric coefficient
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volume fraction
density

standard deviation
Cauchy stress tensor
specific volume
mass fraction

S aqovm

I

NCERTAINTY quantification of numerical simulations is

necessary for establishing the credibility of a code and is
composed of two main activities, verification and validation. We
introduce a new method for conducting verification studies for the
purpose of designing energetic structural materials (ESMs) [1-6].

ESMs are a new class of materials that provide dual functions of
strength and energetic characteristics. ESMs are typically composed
of micron-scale or nanoscale intermetallic particles such as Ni + AL
and mixtures of metals and metal oxides such as Al + Fe,0s;.
Structural reinforcements, polymer binder, and voids are included
to produce a composite with relatively low density and improved
material strength characteristics compared with conventional
explosives.

The material failure criteria for such materials must include the
following two failure modes:

1) Strength-based modes of failure, the material fails due to lack of
sufficient strength when impacted or when exposed to high
temperature.

2) Reaction-based failure, reaction results due to encountered
impact or high temperature during operation.

Designing ESMs is difficult because chemical reaction and plastic
flow in these materials is not currently well understood. These
physical processes can not be directly observed with current tech-
nology. However, we may increase our understanding through
modeling and simulation. Processes such as rapid mixing of
constituents behind the shock discontinuity due to plastic flow and
void collapse result in temperature rise, nonuniform constituent
velocities, mass diffusion, and chemical reactions. Reactions
initiated by shock waves have been classified as either shock-induced
or shock-assisted reactions [7]. By definition, shock-induced
chemical reactions (SICRs) are initiated within the time scales of
mechanical (pressure) equilibration; shock-assisted chemical
reactions (SACRs) are initiated on the larger time scales of thermal
equilibration, after release waves have allowed mechanical
relaxation [7].

Gas gun or explosive loading experiments have been used to study
ESMs and similar metallic powder mixtures during shock loading
[6,8.9]. Because the physical processes involved are coupled, we rely
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solely on gas gun or explosive loading experiments to obtain
multiple material constants in existing SICR and SACR models
[1,4,10-17]. These models have greatly improved our understanding
of experimental results whenever examination and real-time
measurements are possible. Measured quantities such as shock
pressure and shock speed will sometimes only have slight changes
when chemical reaction occurs. Therefore, we are motivated to
quantify and reduce the numerical errors and uncertainty in the gas
gun simulations so that small changes in the measured quantities
given by the simulation are detected.

The goal of this paper is to investigate uncertainty in computer
simulations of gas gun experiments with ESMs. A computer code
developed by the authors has been designed to capture shock
processes in porous mixtures in which chemical reactions may occur.
Uncertainty due to numerical discretization is quantified in a code
developed by these authors. An exact solution is unknown because
material strength and phase changes are included. Therefore, we
extrapolate an estimated solution with associated uncertainty based
on the grid convergence index (GCI) method [9].

II. Background

The state-of-the-art practice for simulation of SICRs and
SACRs involves model qualification [18] based on many important
physical processes in which many of the current models have
excelled. However, quantitative analysis of these models has been
lacking because only straight comparisons between simulation
and experiments have been performed. Uncertainty quantification
requires a verification and validation framework. Although Choi
et al. [19] have quantified uncertainty in simulations for an
unreacting ESM case (SICRs and SACRs were not considered),
errors and uncertainties associated with code verification were not
included.

Verification and validation is possible when all sources of
uncertainty are identified and quantified [18]. Uncertainty quanti-
fication addresses the three fundamental components of computer
simulations for physical systems, namely, model qualification,
model verification, and model validation [18]. As mentioned
previously, model qualification requires an understanding of the
physical phenomena, thus, the problem is to qualify sets of equations
or models for the nature of the physics to be simulated. Error always
exists between a mathematical model and the true physical process
because of simplifying assumptions that are made.

Verification is the process of determining that a model
implementation accurately represents the developer’s conceptual
description of the model and the solution to the model [18]. Four
predominant sources of error are 1) insufficient spatial discretization
convergence, 2) insufficient temporal discretization convergence,
3)lack of iterative convergence, and 4) computer programming [20].
Programming errors and iterative convergence are not addressed in
this paper.

Validation is the process of determining the degree to which a
model is an accurate representation of the real world from the
perspective of the intended uses of the model [18]. The process of
verifying the governing equations and validating the set of physics
models gives us a historical database that has the potential to improve
predictive credibility. Formal verification and validation bench-
marks are suggested by Oberkampf and Trucano [21].

Uncertainty quantification and appropriate frameworks for
verification and validation are discussed in detail in the compre-
hensive review by Oberkampf et al. [22]. These authors point out
that increases in the complexity of a model increase the difficulty of
assessing the accuracy and range of applicability. This has motivated
the current work because SICR models are complex.

The solution over the entire domain, including the boundaries,
must be verified for the geometry and loading conditions of interest.
Hydrocodes employ shock capturing schemes such as the monotone
upstream-centered scheme for conservation laws (MUSCL)
algorithm which has a flux limiter. The order of accuracy in fixed
cell finite volume lowers by one order near a shock discontinuity
compared with the smooth regions, which is the case in our code. If

the observed order of accuracy from grid convergence studies lies
within the theoretical order of accuracy in the smooth region and at
the discontinuity, then the order of accuracy of the limiter has been
verified [23].

Several methods are available for code verification through grid
refinement and some methods are appropriate for nonmonotonic
convergence that may occur in shock simulations. Relatively simple
methods are based on extrapolation or the grid convergence index
(GCI) (see method 3 [24]). However, GCI methods can not provide
statistical confidence as opposed to response surface methods (RSM)
[24]. Further, GCI methods rely on an empirical safety factor, F', to
provide a confidence interval. Some of the assumptions made in GCI
and RSM methods are relaxed in a nonlinear ansatz error model [25].

The confidence estimate for a given safety factor is based on the
number of grid points used N, and no consensus has been reached on
the value. For example, Roache [26] recommends that with N, > 3,
an F; = 1.25 provides 95% certainty (5% uncertainty, that would be
roughly a 20 error band if the distribution were Gaussian) error band
typical of experimentalists. Note that these results are for steady state
fluid flow and heat transfer. Logan and Nitta [24] have concluded that
N, > 4 with F; = 1.25 provides an estimate of 68% certainty (or 10)
based on their database of nonsmooth grid convergence studies. A
consensus has been reached that multiple methods should be
explored in a systematic verification study and that GCI methods
(N g = 3) often produce useful information.

III. Simulation of the Gas Gun Experiment

The theoretical model used to simulate the gas gun experiment is
composed of the ensemble of physical processes and is described at
the continuum level in this study. The set of models presented here
qualitatively represent the processes that occur in the shock
compression of ESMs [27]. Further details and discussion of these
models are given in [27].

A. Conservation Equations

The conservation of mass and energy and the momentum balance
are the governing equations for hydrodynamic simulations involving
the passage of shock waves. Conservation equations are written here
in spatial (Eulerian) coordinates. Unless otherwise stated, the
overbar represents mass mixture averages. The following equations
do not include mass diffusion, that is, v, = v, for all constituents p.
The conservation of mass is

J - _
~=(@+V-(pv)=0 1
ot
where v is the average velocity vector of the mixture components, ¢ is
the time, p is the volume fraction average of the density containing

phases p and is given by,
=Y Epy ©
P

Equation (1) is supplemented by n, — 1 independent constituent
equations given by,

%((ppla) +V- (¢p/_)‘7) = \I‘Imassp (3)

where n, is the total number of constituents in the mixture. ¢, is the
mass fraction for constituent p. The rate of mass production is

lemass 14 = ®Mp Up (4)
where © is the phase transformation rate. M, is the molar mass and

v, is the stoichiometric coefficient for constituent p. The
conservation of momentum is

%(M>+V-(mxv>=v&+ﬁi+\i’m ®)

where ¢ is the Cauchy stress tensor and f is the specific body force
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vector. ¥, represents the change in momentum due to phase changes
and is composed of linear and angular momentum contributions,
respectively,

U, = W (v, + X, X V) ©6)

p

where x,, is the material coordinate for the pth constituent. The
conservation of energy is

%(E)+V-(EV)=V~(¢})+6:?+‘P€ (7

where 7 is the time, ¢ is the heat flux vector, € is the strain rate tensor
(rate of deformation), and \i'e is the source term that represents the
energy contribution due to phase changes (subsequently defined). E
is the total energy in the mixture and is defined as

E:pd(é+lv-v) ®)

where e is the specific internal energy in the dense mixture because
surface energy of the pores is neglected and is defined as

e=C,T )

C, is the mass fraction averaged specific heat capacity at constant
volume in the dense mixture. The source term W, in Eq. (7)
represents the energy contribution due to phase changes and is
given by,

= 1
"Ije = Z\Ijmass P (5 Vp : Vp + /J“cp) (10)
p

where 1), is the specific chemical potential for the pth constituent.
The latent heat of melting AH,,, is accounted for in the numerical
solution by limiting the temperature at the melting temperature 7,,,
for constituent p until melting is complete. The corresponding
difference in the internal energy e is used to calculate the amount of
melting at each time step.

B. Physics Models
Material Strength

Mixture strength is required in the continuum description of the
granular mixture before and after the pores have collapsed. In the
macroscale, each constituent in the mixture is immiscible and repre-
sented as a continuum. Because physical discreteness is transformed
to a mathematical continuum, interactions between constituents
which occur on the interface have to be treated as internal actions in
each constituent continua [28].

The Cauchy stress tensor is decomposed into its hydrostatic P and
deviatoric ¢’ components,

6=—PI+¢ (11)

where I is the second-order identity tensor. Thermomechanical
constitutive relationships include an equation of state in the form
P,=f,(p,e) and a strength relationship in the form o),=
0,(D,T, z), where D is the deformation rate, T is the mixture tem-
perature, and z are internal state variables.

The porous mixture shear modulus £ and yield strength Y are
given by,

o _ _
/J'(T) = Q_U;SI)MP(T)’ Ymix = E;Sp Yp (12)

;L,,(Y:‘) is assumed to depend linearly on temperature such that
up(T=T,) = p, and pu,(T =T,,) =0. T, is the melting tem-
perature. ji(T) =0 when T >T,,, for any constituent p in the
mixture. Constituent yield strength Y, generally depends on the

effective mixture shear strain rate y and temperature 7, that is,
Y, =Y,(y,T).Inthis paper, we assume that ¥, has a constant value.

We assume the material yields when the equivalent stress exceeds
the mixture yield stress, thatis, .4 > Y ie. Von Mises or maximum
distortion energy criterion is used and the radial return method is
applied to the stress deviators. For the gas gun simulations, we
assume one dimensional strain which is often a good approximation
[29]. The equivalent stress in this case is given by,

3 _ _
Oeq = \/E ((U,/Uc)z + 2(0-;')1)2) (13)

where the shock propagates along the x-axis. The deviators are given
in rate form by,

4 _0v, .

2 _ov,
o

=, _ 7
T =3H G

(14)

Single Constituent Equation of State

The Mie-Griineisen equation of state (EOS) is extensively used in
the determination of shock, residual temperatures, and for predicting
the shock response of porous materials [29]. The Griineisen EOS can
easily be derived from the Rankine—Hugoniot equations [29] and is
written in terms of the specific energy e or temperature 7" and specific
volume v =1/p as

C?(v, —v) r 1 Clv,—v) 2
Plev)y)=———F—+t—-|e—z|———
(e U) [Uo - Sl (vo - U)]2 * v ¢ 2 (Uo - Sl(vo - U)
as)
where C is the acoustic wave speed, S, is the slope of the linear

U, — U, curve (U, is the shock velocity), and U, is the particle
velocity. I' is the Griineisen parameter defined as

r:v(a—P) = Topo (16)
de )y P

Void Collapse
The porosity is a measure of the void content and is expressed in

terms of specific volume, v, and density by,

v pf
o0 =—=—

Va P

> 1 (17)

The P — @ model by Herrmann [30] in Eq. (18) is a pore collapse
EOS which has been successfully applied [14,31] assuming a
quadratic dependence on pressure, that is, n = 2 in Eq. (18). The
form of o in Eq. (18) is simplified in this paper from the general form
a=g(P,e):

(7% P < P¢
a=1 1+ (o, — D[P —P)/(P° = P)]"; P¢<P<P*
1; P <P

(18)

where the porosity o > 1 is defined as the ratio of the dense material
o and the density of the porous material p at the same temperature
and pressure. The parameter n describes the order of porosity
dependence on the pressure P and is left as a general unknown
material parameter. P¢ and P are the elastic threshold and pore
collapse strength, respectively. For P < P¢, only elastic deformation
is assumed to take place and for P > P* complete closure of the voids
is assumed. Both P¢ and P* are generally not fit to experimental data
in the same way as other material parameters and are obtained from
simulation results [3] or from experimental observations [9].

Porous Mixture Equation of State

The pressure in the porous mixture P is volume fraction averaged,
thatis, Y »5p = 1. The principle of the P — o model due to Herrmann
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[30] is used, however, the form is modified to account for the
mixture. Here, components in the mixture are assumed to be in
thermal equilibrium. f, denotes the is the EOS form for each solid or
liquid mixture component and uses the material parameters for
constituent p. The pressure for the porous mixture P is written in
terms of the volume fractions & of the porous components p such that
o ,&, = 1. The homobaric assumption for the distended mixture is
given by,

D pz); '
P=(fop(p; ,T)i—'p; P,=P, forp#r (19)
P

Equation (19) is implicit and solved using the bisection method
iteratively. The tight error tolerance ~0.0001% is computationally
expensive to yield highly accurate results. Therefore, errors due to
iterative convergence are not considered in this paper.

Heat Conduction

Fourier’s law in Eulerian coordinates for material convective
transfer takes the vector form,

G=—k,NT + C,pVNT (20)
where Izq is the volume fraction averaged heat conduction coefficient.

Chemical Kinetics

The reaction is assumed to be an elementary reaction therefore the
reaction order is equal to the stoichiometric coefficient, {,,, for each
reactant phase. The reaction rate ® is given by the modified
Arrhenius equation:

. o FAG s 1
700 + 0 = FA(*¢) expl - — [Jx1e

ot
“AG _
waCop el - TTonrs e
]

where 7¢ is the relaxation time for the chemical reaction, R is the
universal gas constant, 7 is the temperature, A is the preexponential
factor, ¢;) is the mass fraction of the constituents in the liquid phase,
AG is the transition state energy (assumed activation energy for the
reaction step), T () refers to the reactant group, and ~ () refers to the
product group. Only forward reactions are considered in the current
study, thus, we let "A=0and A =*A. x » 18 the concentration of
reactant phase p and is expressed as
$p0

Xo = (22)
4

The maximum limit of product mass fraction produced by the
chemical reaction (¢, < 1) is given by,

¢ = Z%; for p = product phases (23)

P

Chemical Reaction Initiation

There have been two proposed explanations to describe
shock-induced chemical reactions described by Chen et al. [32],
the solid-state approach and solid-liquid approach. In the former

approach, a solid-state reaction occurs due to a high density of
defects produced in shock compression in a high pressure and
temperature environment. In the latter approach, one of the reactive
mixture components must be melted before the reaction initiation
may proceed. The mechanochemical processes leading to the
reaction initiation are extremely complex processes involving plastic
deformation, flow, and mixing of the constituents [7].

The activation energy E, is a general unknown parameter that
refers to the energy required for a chemical reaction to initiate. In this
paper, we assume the solid-liquid approach, therefore, we have

E,=T,C, 24)

where T, is the melting temperature of Al.

C. Gas Gun Simulation

The gas gun simulation involves the solution of the preceding
equations for the 1-D strain case which is a widely accepted
approximation [29]. The solution to the conservation equations and
momentum balance is obtained from using the second-order-
accurate MUSCL algorithm [33] with second-order total variation
diminishing Runge—Kutta. The ghost fluid method is applied to the
material interface thus producing O(1) order accurate results at both
the material interface and the shock front [34].

Gas gun and explosive loading experiments are simulated for the
Ni 4+ Al mixture up to pressures P ~5 GPa. The numerical
experiment simulates the impact between a 2 mm thick Cu driver and
a 2 mm thick sample material. The material parameters used in the
simulations are given in Table 1. EOS parameters were obtained by
fitting results given by Marsh [35] and from Boslough [12].

An example simulation is shown in Fig. la in which the Cu
impacts the sample material at velocity V = 1000 m/s. The interface
is given by the dashed vertical line in Fig. 1a. The four plots include
the pressure, particle velocity, temperature, and density along the
x-axis of the simulated Cu (on the left) and the sample material (on
the right). Included in Fig. 1a are the data points used to calculate the
pressure and particle velocity used for comparison with experimental
data shown later in this paper. The time history of the shock front
location is used to calculate the simulated shock velocity and is
shown in Fig. 1b. The location is calculated by interpolating the
particle velocity at a constant pressure that is approximately 50% of
the shock pressure. Simulation results are shown with n, = 400
nodes along the x-axis.

IV. Verification Assessment

Verification involves quantifying the error associated with solving
the governing equations regardless of the values of the material
coefficients. The most important part of verification is to perform
spatial and temporal step size refinement studies.

The first step is to identify the metric or quantity of interest for
observing convergence. The pressure P and shock velocity U, are
useful metrics. In SICR studies, the degree of reaction completion is
another metric of interest. However, measurements to date do not
quantify reactions except in post shocked samples. It is impossible to
discern SICR from SACR in post shocked samples, therefore,
reaction completion is not used in this study. In the interest of length
and simplicity, we choose a single metric, the shock velocity U,
which is a convenient quantity for comparison with gas gun
experiments.

Table 1 Stoichiometric quantities for the equal volume ratio mixture containing Ni + Al and material parameters

Constituent ¢ £, Por kg -m™ C,km-s™! S, C, kI-kg™' -K™! u,GPa Y, MPa kg, W-m™ - K
Al 0.2326 0.5 2700 5.380 1.34 2.0 0.931 25 105 222
Ni 0.7674 0.5 8909 4.590 144 20 0.512 76 60 90.7
Cu e e 8930 3.933 .50 2.0 0.385 46 33 401
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a) Simulation results at time ¢ = 400 ns

Axial location, mm

Time, ns

b) Shock front time history

Fig. 1 Simulation results with the copper flyer impact velocity V; = 922 m/s for the equal volume mixture Al + Ni + «, = 1.66 with n =2 and
homobaric assumption (2, = 400, CFL = 0.4). The data points used to interpolate P and U, are shown in the top two plots and appear as bold lines

because n, = 400 nodes were used.

A. Models of Convergence Error

Generally speaking, we will refer to the exact solution F* and the
discrete solutions in the simplified notation F,, = F(Ax, Atr). We
define the general error metric in Eq. (25) using the norm of the
difference between the continuous and numerical solutions:

exe = [F" = Fy.ll (25)

For the 1D shock wave speed, the error is simply the absolute value of
the difference, thatis, e, , = |F* — F,|.

The Richardson extrapolation estimation (REE) technique
assumes that the solution is in the asymptotic convergence regime
and neglects higher order terms. The discretized solutions are
given by,

F.,=F +a'h (26a)

F. =F+ah! (26b)
where o* is a fitting constant, p* is the convergence rate or order of
convergence, and #4; is either the spatial or the temporal step size,
1/Nis- Equation (26a) is rarely if ever observed in practice. F in
Eq. (26b) refers to a solution that approximates F* by extrapolation
such as the REE technique or by RSM methods for a given set of
fitting parameters {A,, &, p}. The term on the right hand side of
Eq. (26b) is the space-only or time-only error ansatz and takes the
general form

&y =h,+ah! +hot 27)

with three fitting parameters, {A,, &, p}, and higher order terms
(h.o.t).

If an exact solution is known, then p* may be evaluated exactly
using a minimum of N, = 2 grid solutions. In many cases such as
ours the exact solution is unknown. Additionally, the asymptotic
region in which Eqgs. (26) reasonably approximate the solution is
unknown. An estimated order of convergence may be calculated with
three grid points N, = 3, constant refinementratio r,,, constant &, and
constant convergence rate p, as in Roache [36], as

p,=log[(Fy — F3)/(F| — F,)]/ log[r,] (28)

where F, F,, and F; are the fine, medium, and coarse grid solutions,
respectively. If the grid convergence is monotonic with constant
convergence rate, then p, = p* and the extrapolated solution F is

F=F=F + (F 4+ F)/(r’ = 1) (29)

However, F = F* is generally not true. Further, p and & are rarely
constant. One basic approach to deal with realistic convergence
studies is to assume an empirical safety factor F to provide the GCI
or the uncertainty expressed as

GCI = F, /(= 1) (30)

F-F
F

As was mentioned earlier, no consensus has been reached as to the
uncertainty that is represented by a given value of F; witha given N,.
Therefore, we employ this method as a first approximation only.
Throughout this paper, a conservative safety factor F; =3 with
N, = 3isassumed to estimate the uncertainty 68% of the time (or 10)
because we assume the distribution is Gaussian.

Until this point, three main assumptions have been made. The
error ansatz in Eq. (27) assumed that, 1) numerical solution conver-
gence is monotonic, 2) space-time coupling effects are neglected,
and 3) higher order terms are negligible. A nonlinear ansatz model
due to Hemez et al. [25] relaxes these three assumptions and takes the
following form in Eq. (31):

e, =x, +a(Ax)? + B(AD7 + §(Ax)" (A1)’ +hot.  (31)

where A, is the intercept or bias error, o, B, § are regression
coefficients, p is the convergence rate in space, ¢ is the convergence
rate in time, and r, s are space-time coupling orders of convergence.

B. Optimization Procedure Used to Fit the Error Ansatz Models

The coefficients in Eq. (27) are solved analytically as in Eq. (28).
This is not the case when obtaining the coefficients in Eq. (31).
Therefore, we employ a numerical optimization solver to best fit the
coefficients {1, &, 8,6, p, ¢, r, s} in Eq. (31). The best fitis based on
the set of numerical solutions F,, from Ng,, simulations or
computer runs with different grid refinements. The objective
function to minimize is chosen to be the mean squared error (MSE):

1 ~ A
MSE = \/ D DR CEC R ) ]

1..NRuns

The minimization of Eq. (32) is similar to the approach by Hemez
etal. [25] with a slight difference, namely we replace F* with F from
Eq. (29) in the error definition in Eq. (25). Here and from now on, we
define this estimated error as

é.,=F-F, 33)
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In practice, we found that better convergence is obtained by not
taking the absolute value of the right hand side in Eq. (33).

The MSE in Eq. (32) is minimized using MATLAB™ with the
function fininsearch.m. This function implements the Nelder—-Mead
simplex method, a multidimensional unconstrained nonlinear
optimizer. The default termination tolerances (10~*) on the function
value and the output quantity are used. Typically, 200-2000
iterations were required for convergence in this study. Iterations are
performed until the initial guess and the output coefficients are within
the tolerance (10~%).

C. Grid Convergence Study

We demonstrate the use of both the space-only model and the
space—time model through a case study. Here, we seek to minimize
the uncertainty or GCI by systematically investigating several
subsets of the space—time grid refinement space.

The following four steps are conducted in the analysis of the
numerical solution F' ;:

1) Extrapolate a solution F from Eq. (29) assuming p = p, with
associated GCI from Eq. (30).

2) Apply the 3-parameter space-only fit using Eq. (27) and
optimization procedure in Section IV.B.

3) Fit the 8-parameter space-time model in Eq. (31) using the
extrapolated solution from step 1 and the initial guess for parameters
{A,, @, p} from step 2.

4) Select the best subset based on minimum GCI from step 1 and
the minimum MSE from step 3. We use p from the nonlinear ansatz
fit to recalculate the extrapolated solution using Eq. (29).

We conduct the systematic analysis in steps 1-3 to, 1) identify a
possible asymptotic region within the full set of simulation data, and
2) verify the order of convergence obtained in step 1. In step 1, we
seek the three point spatial data set that provides the lowest GCI
because the GCl indicates the degree of asymptotic convergence. We
use step 2 mainly as a way to improve the initial guess for the
8-parameter fit in step 3 and also serves as a check on the general
trends observed. Step 2 provides an exact solution which is useful to
check against the order of convergence in step 1 and step 3. Step 3
exploits the property of the nonlinear ansatz because the data used in
the fit may not necessarily fall within the asymptotic regime,
however, the goodness of fit or MSE must be relatively small to
accurately represent the simulation data.

These steps are demonstrated and explained for the simulation of a
gas gun experiment, in which the impactor velocity is 922 m/s. The
sample material is fully dense, thatis, &, = 1.0, and the mixture is in
stoichiometric quantities for the reaction 3Al 4+ Ni — NiAl;. Here,

F ,mis
x,t

0.4

CFL ’ ) 4

a) Numerical solution

we assume the material parameters to be, C,, =0.5, n=2,
A, = ¢. = 0. Currently, no analytical solution exists for the shock
velocity in this simulation.

Step 1: The full set of of grid refinements for this case study
includes three spatial grids using

Neos = {1800, 1350, 800, 600, 450, 400, 300, 200, 150}
and time step refinement with

CFL ={0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}

There are four data sets with constant spatial refinement ratio
\Fyp, Fy, Fy, Fi ) with respective grid sets

Neae = {[800, 400, 200], [600, 300, 150]. [1800, 600, 200]
[1350, 450, 150]}

We choose three-point spatial refinements to reduce the number of
simulations required during the calibration and validation steps.

The space-only model is fit to each of the four spatial grid sets in
N_qps for each CFL value to obtain the order of convergence and
extrapolated solutions F and F'. For each grid set, the minimum GCI
among all of the CFL values is calculated along with the corres-
ponding extrapolated solution F.

The four grid sets have the lowest GCI when CFL < 0.5 and GCI
values when CFL > (0.5 were found to be significantly higher in
some cases (see Fig. 2b). Therefore, we define screened data ()’ fora
three-point spatial grid set as a subset of the spatial grid containing
CFL values up to the CFL value with the lowest corresponding GCIL.
For example, if the GCl is lowest when CFL = 0.4 for the spatial grid
set {[800,400,200]}, then the corresponding subset ({[800, 400,
200]})’ contains CFL = {0.1, 0.2, 0.3, 0.4}. Each subset contains at
least the three lowest CFL values.

The extrapolated values and associated uncertainties (GCI) are
used in the propagation of uncertainty. We will use the extrapolated
solution F corresponding to CFL value that yields the lowest GCI
with corresponding p. However, we use the most conservative GCI
over the grid subset denoted GCI,,,, (GCI,,,, for screened subsets)
and given in Table 2.

Step 2: In all cases, the 3-parameter (space-only) fit converges
within <200 iterations. The spatial order of convergence is given in
Table 3. The only exception to the procedure in step 1 is for F, in
which we include 0.1 < CFL < 0.5 and 300 < N, < 1800. This
is simply used for comparing to results from the systematic study in
step 4.

Error, m/s
|
@
o

-100

—a—e, CFL=0.1 . \\
21| e CFL=09 : N 1
_140} - | —#— 8-parameter Ansatz, CFL = 0.1] . N
% - 8-parameter Ansatz, CFL = 0.9 \,
—160} T T : \} .

b) 8-parameter ansatz fit with F = 5940.33 m/s

Fig. 2 Shock wave speed with entire range of grid refinement.
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Table 2 Results for the three point extrapolations in step 1. The CFL,
F, GCI, p correspond to the values obtained from the three-point spatial
refinement at the CFL value that results in the lowest GCI in the subset
F, ;. GCl,,,, is the highest GCI among all of the CFL values in the subset

F,, r CEL Fmis GC1%  GClyw%
Fyy 202 281 5937.93 0.13 0.25
Fa. 207 251 5940.59 053 0.53
Fy® 3 04 359 594033 0.02 0.05
Fs, 305 253 5939.74 0.03 0.10

“Best extrapolation based on minimum GCIL.

The maximum difference between the error ansatz and the
estimated error in Eq. (33) over the grid set (or subset) is defined as

Aé = max|e — ¢| (34)
Xt

The MSE and the Ae¢ are used to make comparisons between the four
grid sets and their corresponding subsets.

Step 3: Now the space—time model is fit to each grid set. The best-
fit parameters and order of convergence are given in Table 4.

The numerical solution over the full grid set F, , = Fy,, is shown
in Fig. 2a. These results show a slight peak in the results near the
coarsest spatial step. It is not always possible to determine the
asymptotic regime from these results only. A sudden peak, either
positive or negative, in the solution near the coarse or fine mesh may
indicate results outside of the asymptotic regime. This is discussed
further in the information that follows.

The space-time fit from Eq. (31) and the estimated error from
Eq. (33) are shown for two CFL values in Fig. 2b. Figure 2 shows that
F,, depends much more on the spatial refinements compared with
the temporal refinements. The 8-parameter ansatz approximates F,,
relatively well considering the nonmonotonic behavior in F, ,.

Step 4: The subset F; contains the lowest MSE and the lowest
GCI, therefore, we select this as the best subset in this example
problem. We substitute p’ = 2.98 from the 8-parameter ansatz into
Eq. (29) with the spatial values corresponding to CFL = 0.4 to yield
F = 5940.29 m/s and GCI = 0.02%, which are nearly identical to

the values calculated in Table 2. We may now express the numerical
solution within 1 standard deviation of the mean as F = 5940.29+
1.18 m/s.

The selection of the subset F;, is not a surprising result because
F3, includes the most refined spatial data out of all of the subsets
considered in this study. Now we need to understand this result by
exploring the limits of the asymptotic regime. We do not have
enough information to define the exact range of the asymptotic
region. However, we can elucidate our selection of F;, by examining
the results from steps 1-3.

Before analyzing the convergence, we address our concern as to
the spatial order of convergence in this grid set which is
approximately p = 2.98 from the 8-parameter fit to F; ;. The value of
the order of convergence p = 2.98 is higher than expected because
1 < p =<2 from the MUSCL algorithm and p < 1 from the ghost
fluid method applied at the material interface which is zero order
accurate. This value is lower than the extrapolated value p = 3.59
from step 1 given in Table 2 and approximately the same as the
3-parameter fit p = 3.04. Most of the data in Tables 2—4 suggests
that p == 2-2.5. The 8-parameter fit to Fy;; is p = 1.5 which is lower
than all of the other values due to nonmonotonic convergence over
the entire span considered in this data set. The 8-parameter fit to the
screened set Fy;; is p = 2.96, in which nonmonotonic convergence
seen in the range 0.6 < CFL < 0.9 and 150 < N ., < 200 has been
removed. This value is nearly identical to the value p = 2.98 from
the 8-parameter fit to /', therefore indicating that F7 , represents the
behavior of the data better than the other subsets.

Temporal convergence: The systematic identification of the
subsets F',, significantly reduces the MSE in Table 4. The screened
subsets F, except F), contain CFL < 0.5 which indicates that
asymptotic convergence is more likely to occur when CFL < 0.5.
GCI values when CFL = 0.1 for all four grid subsets were found to
be relatively close to the minimum value; thus, a limit as temporal
refinements become infinitely fine is not observed in this study. In
practical applications, CFL =< 0.1 is prohibitively expensive.

Spatial convergence: From Table 2, we see that the GCI for the
coarse subsets is approximately twice that of the fine subsets.
Therefore, the coarse subsets are not likely to be in the asymptotic
regime. MSE tended to be much lower in the fine subsets compared

Table 3 Fit the 3-parameter error ansatz in step 2

F., i @ p  MSEs  Aés s % 5 MSE'¢ A
Fa 506 —28x10° 197 880 3284 262 —7.1x108 296 137 3.39
Fy b 088  —32x107 242 562 1490 176 -28x107 241 155 333
F. 811 —18x10° 187 1331 3486 975 —13x10° 181 1174  33.05
Fy® 136 —1.0x108 264 559 1490 155 —7.5x108 3.04 240 5.82
Fi, 183  —99x10° 222 1317 3486 146 —17x107 236 443 1375

“Contains the best subset based on minimum GCL
Contains the best subset based on minimum MSE.
“Units are m/s.

Table 4 Fit the 8-parameter error ansatz in step 3

P q r K MSE¢ Ae¢

For  A° o B 8

Fan 3.6 —1.6x10° —7.6x107 8.7 x10°
Fyy 38 —49x10° —14x10* 14x10*
Fy, 87 —11x10" -3.6x10> 1.5x10?
Fy®® 09 —13x107 4.6x10° -5 x 10%
Fs, 14 —1.8x107 0.0 —7.3 % 10°
Fopo ApS o ' &

Fl 42 -7.1x10° —1.1x10" —4.0x 10
b 1.1 -58x107 —23x10° 23x10°
F, 94 -83x10° 23x10° —6.6x10°
Fi 19 —51x108  —6.1x10*> —1.2x 10"
F. 1.8 —14x10" -82x10° —8.6x 10

1.50 —19.92 142 —-0.04 499 19.17
296 098 000 098 325 971
228 1.50 -0.14 1.58 6.99 15.25
232 69.8 122 047 3.19  8.67
241 —=7529 182 1.01 558 17.02
)4 q r s MSE' ¢  Ae'¢
296 173 720 0.07 0.82 1.89
256 3,55 000 3.56 046 093
176 568 2.13 2.6l 2.55  7.00
298 677 413 132 0.43 1.04

233 321 3.15  2.68 1.14  2.65

“Contains the best subset based on minimum GCIL.
°Contains the best subset based on minimum MSE.
Units are m/s.
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Table 5 Summary of results from steps 1-3. Note: units for F and MSE’ are m /s

CFL  p, F GCI %

GClyp%  p'*

MSE'¢ j'® MSE'?

Fyy 03 222 196349 154
F,, 02 113 2030.16 12.68
Fy$ 02 28 195618 0.6
Fod 01 201 194965  0.44

2.44 1.70 5.19 1.47 1.92
18.64 0.06 9.35 0.07 2.26
0.06 3.94 4.55 4.06 2.66
0.60 1.79 9.45 1.83 1.47

“3-parameter ansatz fit.

b8-parameter ansatz fit.

“Contains the best subset based on minimum GCIL.
dContains the best subset based on minimum MSE.

with the coarse subsets. This observation provides further evidence
that the two coarsest spatial grid sizes are not within the asymptotic
regime. As in the temporal convergence, we have no indication from
this data as to the limit in the asymptotic region as the spatial
refinements become infinitely fine.

V. Gas Gun Simulation Characterization

A characterization for the numerical model using two case studies
is provided in this section. First, the problem is simplified to the
impact of pure Al to give a qualitative benchmark for which mixture
EOS algorithms are not employed. Furthermore, this case illustrates
the influence of plastic flow and plastic work on the shock velocity. In
the second case, we simulate a porous mixture of Ni+ Al to
understand the influence of porosity on the convergence because the
P-o model is now exercised. Both of these cases are preliminary
steps in the eventual goals of calibrating the material parameters and
then assessing the degree of model validity using a completely
independent set of experimental data. Calibration and validation
activities are not given in this paper. Therefore, comparison with
experiments is not performed.

A. Compare Extrapolation to an Exact Solution

We may construct an exact solution for the case when the target
material is pure Al and the Cu material impacts at velocity V. The
particle velocity in the target material U ,, is derived by Meyers [29]
and given in corrected form by,

_ —(po1C1 + 205181V + pnCs) £ (A2

U (35)
7 205181 = P0252)
with
A =—(pp1C1 + 20,181V + p2Cs)?
— 40,181 = P252) (P1 C1V + p,1S1V?) (36)

1950 *
1900

1850

F ,m/s
Xt

1800 *

1750 -

a) Numerical solution

where p,, is the reference density, C; is the acoustic sound speed, U ,;
is the particle velocity, S; is the slope of the linear U,; — U, curve for
the ith component.

The shock velocity in the target material is given by substituting
the particle velocity from Eq. (35) into the EOS equation:

Up=0C+ 85U, (37)

Unfortunately, Eq. (37) does not provide the analytical solution to
the numerical model given in this paper because 1) material strength
is not included, and 2) thermal pressure contribution due to changes
in internal energy relative to plastic work and heat conduction is not
accounted for here. However, these effects are usually assumed to be
relatively small in shock problems [29].

For example, we simulate the Cu impact on the Al sample with
impact velocity V =922 m/s. From Eq. (37) we have U,=
6241.74 m/s. The best grid set from step 1 is F; with CFL = 0.6
with the following results: p, =2.87, GCI =0.01%, GCI,,,=
0.01%, and F =6443.12 m/s. The error is 3.23%.

B. Compare Gas Gun Simulation with Experiments

The grid convergence approach is applied to simulations of gas
gun experiments [9]. The sample material from this experiment is
60% theoretical mass density or o, = 1.66. Here, we assume
the material parameters to be C,, =0.5, n =2, P =100 MPa,
P’ =3 GPa,and A, = ¢. = 0.

We apply steps 1-3 from the example study previously shown and
give the results from step 1 in Table 5. The 8-parameter fit in Fig. 3
shows a much different solution behavior due to the introduction of
the porosity. The solution convergence in Fig. 3 proceeds in the
opposite direction compared with the convergence in Fig. 2.
However, a similar trend is observed in that a nonmonotonic solution
appears. This is shown by the flat solution for 4/h; < 4.

In Table 5 we see that the three-point extrapolation with the lowest
GClI is contained within subset Fj,. In contrast, the 8-parameter

2501 —a—e CFL=0.1 . o ]
.. e CFL=09 : : :
= 8-parameter Ansatz, CFL = 0.1
2001 « w1 1 8-parameter Ansatz, CFL = 0.9 T
» 150} ;
L
€
o
g
= 100} .
50 B
0 - -
0 2 4 8 10 12

6
h/h,

b) 8-parameter ansatz fit with F =1956 m/s

Fig. 3 Shock wave speed with entire range of grid refinement for V.



REDING AND HANAGUD 1625

ansatz fit with the lowest GCI is contained within subset F5.. An
extraordinarily high spatial order of convergence is predicted by the
reduced subset F,. The reduced subset F;, contains spatial values
associated with CFL = 0.1, 0.3 and the lower CFL = 0.1 value may
be outside of the asymptotic range. Therefore, the actual spatial order
of convergence is closer to p, = 2.82, which is closer to the rate of
spatial convergence that was observed in Table 4. The higher GCI
and MSE values suggests that the ghost fluid method produces larger
errors when the target material is porous.

VI. Conclusions

The verification procedure is demonstrated by using gas gun
simulation results in which Cu impacts a nonporous stoichiometric
Ni; + Al mixture. The procedure systematically identifies the best
space—time grid refinement subset with the lowest GCI and best
linear and nonlinear ansatz fits, that is, the lowest MSE values using
the extrapolated solution instead of the exact solution. This criteria
identified the subset 5, which closely matches the observed order of
convergence from the linear and nonlinear ansatz fits to the set F, in
which coarse grid refinements are screened out.

By identifying the subset F'5;, we 1) reduce number of simulations
required to obtain the extrapolated value, and 2) determine the
extrapolated value with the lowest uncertainty or GCIL. In all of the
cases observed, the 8-parameter nonlinear ansatz fit resulted in a
lower MSE (by 5 times in many cases) compared with the space only
3-parameter linear ansatz fit. Therefore, the nonlinear ansatz better
approximates the actual numerical error.

From the gas gun simulations, we found that:

1) The verification method given in this paper is well motivated
because the determination of analytical solutions is difficult even for
the simple case of a pure Al target.

2) Although the solution convergence trend may be very different
in two cases (with and without porosity), the systematic verification
approach identifies the same best grid set based on lowest GCI, that
is, F3;. The proposed method is useful in estimating the temporal and
spatial convergence rates and for identifying the asymptotic regime.

The validation framework presented in this paper is appropriate
for the state of the art models used to study ESMs. This framework
will need to be extended as the physical processes become more well-
known. The proposed verification method is useful in several high
consequence engineering applications such as nuclear reactor safety,
underground nuclear waste storage, and nuclear weapon safety or
applications such as aircraft with computational fluid dynamics
simulations.
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